Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.441
Filtrar
1.
Sci Rep ; 14(1): 6392, 2024 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493198

RESUMEN

Polycystic ovary syndrome (PCOS) is a complex reproductive endocrinological disorder influenced by a combination of genetic and environmental factors. Linoleic acid (LA) is a widely consumed ω-6 polyunsaturated fatty acid, accounting for approximately 80% of daily fatty acid intake. Building upon the prior investigations of our team, which established a connection between LA levels in the follicular fluid and PCOS, this study deeply examined the specific impact of LA using a granulosa cell line. Our findings revealed that LA exerts its influence on granulosa cells (GCs) by binding to the estrogen receptor (ER). Activated ER triggers the transcription of the FOXO1 gene. Reactive oxygen species (ROS)-related oxidative stress (OS) and inflammation occur downstream of LA-induced FOXO1 activation. Increased OS and inflammation ultimately culminate in GC apoptosis. In summary, LA modulates the apoptosis and inflammation phenotypes of GCs through the ER-FOXO1-ROS-NF-κB pathway. Our study provides additional experimental evidence to comprehend the pathophysiology of PCOS and provides novel insights into the dietary management of individuals with PCOS.


Asunto(s)
Ácido Linoleico , Síndrome del Ovario Poliquístico , Femenino , Humanos , Especies Reactivas de Oxígeno/metabolismo , Ácido Linoleico/farmacología , Ácido Linoleico/metabolismo , Síndrome del Ovario Poliquístico/metabolismo , Receptores de Estrógenos/metabolismo , Células de la Granulosa/metabolismo , Apoptosis , Inflamación/metabolismo , Proteína Forkhead Box O1/metabolismo
2.
Bioresour Technol ; 399: 130566, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38467262

RESUMEN

The low-cost carbon source, acetate, was utilized to feed a linoleic acid-rich Chlorella sorokiniana for microalgal biomass and lipid accumulation. Remarkably high tolerance capability to high acetate dosage up to 30 g/L was observed, with heterotrophy being the preferred trophic mode for algal growth and lipogenesis when supplemented 20 g/L acetate. Transcriptome analysis revealed a marked activation of pathways involved in acetate bioconversion and lipogenesis upon exposure to high-level of acetate. However, the enhancement of photorespiration inhibited photosynthesis, which ultimately led to a decrease in biomass and lipid under mixotrophy. Heterotrophic acetate-feeding generated more superior amino acid profiling of algal biomass and a predominant linoleic acid content (50 %). Heterotrophic repeat fed-batch strategy in 5 L fermenter significantly increased the growth performance and lipid titer, with the highest levels achieved being 23.4 g/L and 7.0 g/L, respectively. This work provides a viable approach for bio-products production through acetate-based heterotrophic algal cultivation.


Asunto(s)
Chlorella , Microalgas , Chlorella/metabolismo , Ácido Linoleico/metabolismo , Microalgas/metabolismo , Procesos Heterotróficos , Biomasa , Acetatos
3.
PLoS One ; 19(3): e0300719, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38527055

RESUMEN

Climate change increases global temperatures, which is lethal to both livestock and humans. Heat stress is known as one of the various livestock stresses, and dairy cows react sensitively to high-temperature stress. We aimed to better understand the effects of heat stress on the health of dairy cows and observing biological changes. Individual cows were divided into normal (21-22 °C, 50-60% humidity) and high temperature (31-32 °C, 80-95% humidity), respectively, for 7-days. We performed metabolomic and transcriptome analyses of the blood and gut microbiomes of feces. In the high-temperature group, nine metabolites including linoleic acid and fructose were downregulated, and 154 upregulated and 72 downregulated DEGs (Differentially Expressed Genes) were identified, and eighteen microbes including Intestinimonas and Pseudoflavonifractor in genus level were significantly different from normal group. Linoleic acid and fructose have confirmed that associated with various stresses, and functional analysis of DEG and microorganisms showing significant differences confirmed that high-temperature stress is related to the inflammatory response, immune system, cellular energy mechanism, and microbial butyrate production. These biological changes were likely to withstand high-temperature stress. Immune and inflammatory responses are known to be induced by heat stress, which has been identified to maintain homeostasis through modulation at metabolome, transcriptome and microbiome levels. In these findings, heat stress condition can trigger alteration of immune system and cellular energy metabolism, which is shown as reduced metabolites, pathway enrichment and differential microbes. As results of this study did not include direct phenotypic data, we believe that additional validation is required in the future. In conclusion, high-temperature stress contributed to the reduction of metabolites, changes in gene expression patterns and composition of gut microbiota, which are thought to support dairy cows in withstanding high-temperature stress via modulating immune-related genes, and cellular energy metabolism to maintain homeostasis.


Asunto(s)
Lactancia , Ácido Linoleico , Femenino , Humanos , Bovinos , Animales , Lactancia/fisiología , Ácido Linoleico/metabolismo , Respuesta al Choque Térmico/fisiología , Homeostasis , Fructosa/metabolismo , Calor , Leche/metabolismo
4.
Immunology ; 172(1): 144-162, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38361249

RESUMEN

Macrophages expressing group V phospholipase A2 (Pla2g5) release the free fatty acid (FFA) linoleic acid (LA), potentiating lung type 2 inflammation. Although Pla2g5 and LA increase in viral infections, their role remains obscure. We generated Pla2g5flox/flox mice, deleted Pla2g5 by using the Cx3cr1cre transgene, and activated bone marrow-derived macrophages (BM-Macs) with poly:IC, a synthetic double-stranded RNA that triggers a viral-like immune response, known Pla2g5-dependent stimuli (IL-4, LPS + IFNγ, IL-33 + IL-4 + GM-CSF) and poly:IC + LA followed by lipidomic and transcriptomic analysis. Poly:IC-activated Pla2g5flox/flox;Cx3cr1cre/+ BM-Macs had downregulation of major bioactive lipids and critical enzymes producing those bioactive lipids. In addition, AKT phosphorylation was lower in poly:IC-stimulated Pla2g5flox/flox;Cx3cr1cre/+ BM-Macs, which was not restored by adding LA to poly:IC-stimulated BM-Macs. Consistently, Pla2g5flox/flox;Cx3cr1cre/+ mice had diminished poly:IC-induced lung inflammation, including inflammatory macrophage proliferation, while challenging Pla2g5flox/flox;Cx3cr1cre/+ mice with poly:IC + LA partially restored lung inflammation and inflammatory macrophage proliferation. Finally, mice lacking FFA receptor-1 (Ffar1)-null mice had reduced poly:IC-induced lung cell recruitment and tissue macrophage proliferation, not corrected by LA. Thus, Pla2g5 contributes to poly:IC-induced lung inflammation by regulating inflammatory macrophage proliferation and LA/Ffar1-mediated lung cell recruitment and tissue macrophage proliferation.


Asunto(s)
Ácido Linoleico , Neumonía , Animales , Ratones , Proliferación Celular , Interleucina-4/metabolismo , Ácido Linoleico/metabolismo , Pulmón , Macrófagos
5.
Nat Commun ; 15(1): 1617, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388542

RESUMEN

Periodontitis is closely related to inflammatory bowel disease (IBD). An excessive and non-self-limiting immune response to the dysbiotic microbiome characterizes the two. However, the underlying mechanisms that overlap still need to be clarified. We demonstrate that the critical periodontal pathogen Porphyromonas gingivalis (Pg) aggravates intestinal inflammation and Th17/Treg cell imbalance in a gut microbiota-dependent manner. Specifically, metagenomic and metabolomic analyses shows that oral administration of Pg increases levels of the Bacteroides phylum but decreases levels of the Firmicutes, Verrucomicrobia, and Actinobacteria phyla. Nevertheless, it suppresses the linoleic acid (LA) pathway in the gut microbiota, which was the target metabolite that determines the degree of inflammation and functions as an aryl hydrocarbon receptor (AHR) ligand to suppress Th17 differentiation while promoting Treg cell differentiation via the phosphorylation of Stat1 at Ser727. Therapeutically restoring LA levels in colitis mice challenged with Pg exerts anti-colitis effects by decreasing the Th17/Treg cell ratio in an AHR-dependent manner. Our study suggests that Pg aggravates colitis via a gut microbiota-LA metabolism-Th17/Treg cell balance axis, providing a potential therapeutically modifiable target for IBD patients with periodontitis.


Asunto(s)
Colitis , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Periodontitis , Humanos , Ratones , Animales , Linfocitos T Reguladores , Porphyromonas gingivalis , Ácido Linoleico/metabolismo , Ratones Endogámicos C57BL , Inflamación/metabolismo , Células Th17
6.
Biochem Biophys Res Commun ; 702: 149618, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38340658

RESUMEN

Patatin-like phospholipase domain-containing 1 (PNPLA1) is crucial in the esterification of linoleic acid (LA; 18:2n-6) to ω-hydroxy fatty acids (FA) of ceramide 1 (Cer1), the major barrier lipid of the differentiated epidermis. We previously reported that γ-linolenic acid (GLA; 18:3n-6) as well as LA is esterified to Cer1 subspecies with sphingosine (d18:1) or eicosasphingosine (d20:1) amide-linked to two different ω-hydroxy FA (30wh:0; 32wh:1). Here, we further investigated whether PNPLA1 is also responsible for esterification of GLA to these Cer1 subspecies in normal human keratinocytes (NHK). As late/terminal differentiation was induced in NHK, PNPLA1 and differentiation markers were expressed, and LA-esterified Cer1 subspecies (18:2n-6/C30wh:0 or C32wh:0/d18:1; 18:2n-6/C32wh:0/d20:1) were detected, which were further increased with LA treatment. GLA-esterified Cer1 subspecies (18:3n-6/C30wh:0 or C32wh:0/d18:1; 18:3n-6/C32wh:0/d20:1) were detected only with GLA treatment. Specific small interfering RNA-mediated knockdown of PNPLA1 (KDP) in differentiated NHK decreased levels of these LA-esterified Cer1 subspecies overall and of involucrin (IVL), a terminal differentiation marker. Moreover, KDP resulted in lesser LA/GLA responses as characterized by more significant decreases in IVL and LA/GLA-esterified Cer1 subspecies overall and an accumulation of non-esterified ω-hydroxy ceramides, their putative precursors; the decrease of 18:3n-6/C32wh:0/d18:1, the predominant GLA-esterified Cer1 subspecies, specifically paralleled the increase of C32wh:0/d18:1, its corresponding precursor. PNPLA1 is responsible for NHK terminal differentiation and also for esterification of GLA to the ω-hydroxy FA of Cer1.


Asunto(s)
Queratinocitos , Ácido gammalinolénico , Humanos , Ácido gammalinolénico/metabolismo , Esterificación , Epidermis/metabolismo , Ceramidas/metabolismo , Ácidos Grasos/metabolismo , Ácido Linoleico/metabolismo , Aciltransferasas/metabolismo , Fosfolipasas/metabolismo
7.
Yakugaku Zasshi ; 144(4): 431-439, 2024 Apr 01.
Artículo en Japonés | MEDLINE | ID: mdl-38246655

RESUMEN

The neural cell death in cerebral infarction is suggested to be ferroptosis-like cell death, involving the participation of 15-lipoxygenase (15-LOx). Ferroptosis is induced by lipid radical species generated through the one-electron reduction of lipid hydroperoxides, and it has been shown to propagate intracellularly and intercellularly. At lower oxygen concentration, it appeared that both regiospecificity and stereospecificity of conjugated diene moiety in lipoxygenase-catalysed lipid hydroperoxidation are drastically lost. As a result, in the reaction with linoleic acid, the linoleate 9-peroxyl radical-ferrous lipoxygenase complex dissolves into the linoleate 9-peroxyl radical and ferrous 15-lipoxygenase. Subsequently, the ferrous 15-lipoxygenase then undergoes one-electron reduction of 13-hydroperoxy octadecadienoic acid, generating an alkoxyl radical (pseudoperoxidase reaction). A part of the produced lipid alkoxyl radicals undergoes cleavage of C-C bonds, liberating small molecular hydrocarbon radicals. Particularly, in ω-3 polyunsaturated fatty acids, which are abundant in the vascular and nervous systems, the liberation of small molecular hydrocarbon radicals was more pronounced compared to ω-6 polyunsaturated fatty acids. The involvement of these small molecular hydrocarbon radicals in the propagation of membrane lipid damage is suggested.


Asunto(s)
Araquidonato 15-Lipooxigenasa , Ácido Linoleico , Peróxidos , Ácido Linoleico/metabolismo , Ácidos Grasos Insaturados/química , Ácidos Grasos Insaturados/metabolismo , Peróxidos Lipídicos/metabolismo , Lipooxigenasa/metabolismo , Hidrocarburos , Muerte Celular , Oxígeno/metabolismo , Radicales Libres/metabolismo
8.
Biomed Pharmacother ; 171: 116127, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38198951

RESUMEN

The lipid content of skin plays a determinant role in its barrier function with a particularly important role attributed to linoleic acid and its derivatives. Here we explored the consequences of interfering with the soluble epoxide hydrolase (sEH) on skin homeostasis. sEH; which converts fatty acid epoxides generated by cytochrome P450 enzymes to their corresponding diols, was largely restricted to the epidermis which was enriched in sEH-generated diols. Global deletion of the sEH increased levels of epoxides, including the linoleic acid-derived epoxide; 12,13-epoxyoctadecenoic acid (12,13-EpOME), and increased basal keratinocyte proliferation. sEH deletion (sEH-/- mice) resulted in thicker differentiated spinous and corneocyte layers compared to wild-type mice, a hyperkeratosis phenotype that was reproduced in wild-type mice treated with a sEH inhibitor. sEH deletion made the skin sensitive to inflammation and sEH-/- mice developed thicker imiquimod-induced psoriasis plaques than the control group and were more prone to inflammation triggered by mechanical stress with pronounced infiltration and activation of neutrophils as well as vascular leak and increased 12,13-EpOME and leukotriene (LT) B4 levels. Topical treatment of LTB4 antagonist after stripping successfully inhibited inflammation and neutrophil infiltration both in wild type and sEH-/- skin. While 12,13-EpoME had no effect on the trans-endothelial migration of neutrophils, like LTB4, it effectively induced neutrophil adhesion and activation. These observations indicate that while the increased accumulation of neutrophils in sEH-deficient skin could be attributed to the increase in LTB4 levels, both 12,13-EpOME and LTB4 contribute to neutrophil activation. Our observations identify a protective role of the sEH in the skin and should be taken into account when designing future clinical trials with sEH inhibitors.


Asunto(s)
Epóxido Hidrolasas , Inflamación , Queratinocitos , Ácido Linoleico , Animales , Ratones , Proliferación Celular , Compuestos Epoxi , Queratinocitos/citología , Queratinocitos/enzimología , Leucotrieno B4 , Ácido Linoleico/metabolismo
9.
Life Sci ; 337: 122356, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38123015

RESUMEN

Metabolic syndrome (MetS), which is characterized by insulin resistance, high blood glucose, obesity, and dyslipidemia, is known to increase the risk of dementia accompanied by memory loss and depression. The direct pathways and specific mechanisms in the central nervous system (CNS) for addressing fatty acid imbalances in MetS have not yet been fully elucidated. Among polyunsaturated acids, linoleic acid (LA, n6-PUFA) and α-linolenic acid (ALA, n3-PUFA), which are two essential fatty acids that should be provided by food sources (e.g., vegetable oils and seeds), have been reported to regulate various cellular mechanisms including apoptosis, inflammatory responses, mitochondrial biogenesis, and insulin signaling. Furthermore, inadequate intake of LA and ALA is reported to be involved in neuropathology and neuropsychiatric diseases as well as imbalanced metabolic conditions. Herein, we review the roles of LA and ALA on metabolic-related dementia focusing on insulin resistance, dyslipidemia, synaptic plasticity, cognitive function, and neuropsychiatric issues. This review suggests that LA and ALA are important fatty acids for concurrent treatment of both MetS and neurological problems.


Asunto(s)
Disfunción Cognitiva , Demencia , Dislipidemias , Resistencia a la Insulina , Humanos , Ácido Linoleico/metabolismo , Ácido alfa-Linolénico/farmacología , Ácido alfa-Linolénico/metabolismo , Ácidos Grasos/metabolismo , Disfunción Cognitiva/etiología , Demencia/etiología
10.
Free Radic Biol Med ; 211: 89-95, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38101585

RESUMEN

Cholesterol is an essential component of cell membranes and serves as an important precursor of steroidal hormones and bile acids, but elevated levels of cholesterol and its oxidation products have been accepted as a risk factor for maintenance of health. The free and ester forms of cholesterol and fatty acids are the two major biological lipids. The aim of this hypothesis paper is to address the long-standing dogma that cholesterol is less susceptible to free radical peroxidation than polyunsaturated fatty acids (PUFAs). It has been observed that cholesterol is peroxidized much slower than PUFAs in plasma but that, contrary to expectations from chemical reactivity toward peroxyl radicals, cholesterol appears to be more readily autoxidized than linoleates in cell membranes. The levels of oxidation products of cholesterol and linoleates observed in humans support this notion. It is speculated that this discrepancy is ascribed to the fact that cholesterol and phospholipids bearing PUFAs are localized apart in raft and non-raft domains of cell membranes respectively and that the antioxidant vitamin E distributed predominantly in the non-raft domains cannot suppress the oxidation of cholesterol lying in raft domains which are relatively deficient in antioxidant.


Asunto(s)
Ácido Linoleico , Fosfolípidos , Humanos , Fosfolípidos/metabolismo , Ácido Linoleico/metabolismo , Peroxidación de Lípido , Antioxidantes/metabolismo , Colesterol/metabolismo , Membrana Celular/metabolismo , Ácidos Grasos Insaturados/metabolismo , Ácidos Linoleicos/metabolismo
11.
J Agric Food Chem ; 71(49): 19610-19621, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38038963

RESUMEN

This study investigated differences in absorption and metabolism between 1,3-oleate-2-palmitate glycerol (OPO) and 1-oleate-2-palmitate-3-linoleate glycerol (OPL) using C57BL/6J mice. OPL was associated with higher postprandial plasma total triacylglycerol (TG), low-density lipoprotein cholesterol (LDL-C) concentrations, and the ratio of LDL-C to high-density lipoprotein cholesterol (HDL-C) compared to those of OPO (p > 0.05). OPO significantly increased postprandial oleic acid (OA) concentrations compared to OPL over the entire monitoring period (p < 0.05), while OPL significantly elevated linoleic acid (LA) levels compared to OPO (p < 0.05). After 1 month of feeding, the mice in both OPO and OPL groups showed lower final weight, weight gain, and liver TG, LDL-C, and LDL/HDL concentrations compared to the control (soybean oil) group. Lipidomics results showed that OPO increased the biosynthesis of very long-chain fatty acids and decreased the abundance of AcCa (16:1), AcCa (18:2), AcCa (18:1), AcCa (16:0), CarE (16:0), and CarE (16:1) relative to OPL. These lipid metabolites were positively correlated with liver TG, LDL-C, and LDL/HDL levels and negatively related to peroxisome proliferator-activated receptors α (PPARα) and acyl-CoA oxidase (ACOX1) expression. This study showed differences in physiologic functions between OPO and OPL and provided support for the future application of OPL in infant formula.


Asunto(s)
Ácido Linoleico , Ácido Oléico , Humanos , Ratones , Animales , Ácido Oléico/metabolismo , Ácido Linoleico/metabolismo , Palmitatos , Glicerol , LDL-Colesterol , Ratones Endogámicos C57BL , Triglicéridos/metabolismo , Ácidos Linoleicos
12.
Eur Rev Med Pharmacol Sci ; 27(22): 10815-10830, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38039010

RESUMEN

OBJECTIVE: This study aims to explore underlying molecular variations in the expression of miRNAs in kidney tissues of ginger-treated and non-treated cyclophosphamide (CP)-intoxicated rats. MATERIALS AND METHODS:   A total of 40 adult male Wistar rats were randomly divided into four groups of 10 each: Group I (control: received normal food and water), Group II (received ginger at a dose of 300 mg/kg), Group III (received CP 75 mg/kg, i.p.), and Group IV (received the same dose of CP and ginger extract).  Rats received a single injection of 75 mg/kg CP on days 3, 4, 5, 19, 20, and 21. In CP-intoxicated rats, the treatment with ginger extract at a dose of 300 mg/kg was received by oral gavage starting seven days before CP and continuing throughout the duration of the experiment for four weeks. Molecular variations in the expression of miRNAs, apoptotic genes, histological kidney damage, and abnormal kidney function in control, ginger, and CP-intoxicated rats were identified by using real-time RT-PCR Analysis, immunohistochemical, and colorimetric assays. In addition, HPLC analysis and liquid chromatography spectrophotometry analysis using Diphenyl-1-picrylhydrazyl (DPPH) radical, and Β-Carotene-linoleic acid reagents were applied respectively for in-vitro screening of phytoconstituents and antioxidant activity for ginger extract. RESULTS: The kidney tissues of CP-intoxicated rats displayed an increase in lipid peroxidation marker malonaldehyde (MDA), DNA damage, and fibrosis markers like hyaluronic acid (HA) and hydroxyproline Hypx) with a decrease in the superoxide dismutase (SOD) and total antioxidant capacity (TAC). In addition, molecular expressions of mRNA fibrotic genes such as collagen, type 1, alpha 1 (COL1A1), and α-smooth muscle actin (αSMA). Molecular expressions of levels of B-cell lymphoma 2 (BCl-2) mRNA gene were down-regulated, and the expression of mRNA apoptotic; BCL2 associated X gene (Bax), caspase-3, Bax/BCl-2 ratio genes were significantly up-regulated respectively. Moreover, cellular oxidative genes, erythroid 2-related factor (Nrf2), and heme oxygenase-1 (HO-1) were down-regulated, respectively. The miR-155-5p, miR-34a-5p, miR-21-5p significantly increased while the miR-193b-3p, miR-455-3p, and miR-342-3p significantly decreased. Ginger also increased the expression of Nrf2, HO-1, and BCl-2 genes in the kidneys of rats induced with CP. In addition, active phytoconstituents, particularly 6]]-shogaol and 6]]-gingerol, were significantly identified in ginger extract using HPLC analysis. Antioxidant activity of these active metabolites were shown to be higher against in vitro free radicals (DPPH and Β-Carotene-linoleic acid), suggesting the potential antioxidant and antiapoptotic properties of ginger against CP-toxicity. CONCLUSIONS: Treatment with ginger in rats induced with CP resulted in significant improvement in the expression of certain molecular miRNAs. The kidney tissues of these rats showed a marked decrease in the expression of miR-155-5p, miR-34a-5p, and miR-21-5p, while the levels of miR-193b-3p, miR-455-3p, and miR-342-3p were observed to increase significantly. In conclusion, ginger can protect rats from CP-induced nephrotoxicity.


Asunto(s)
MicroARN Circulante , MicroARNs , Ratas , Masculino , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Ratas Wistar , MicroARN Circulante/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Ácido Linoleico/metabolismo , beta Caroteno/metabolismo , Ciclofosfamida/toxicidad , Riñón/patología , MicroARNs/genética , MicroARNs/metabolismo , Biomarcadores/metabolismo , ARN Mensajero/metabolismo
13.
Sci Rep ; 13(1): 18983, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923895

RESUMEN

The antidiabetic drug pioglitazone ameliorates insulin resistance by activating the transcription factor PPARγ. In addition to its blood glucose-lowering action, pioglitazone exerts pleiotropic effects including amelioration of nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH). The mechanism by which pioglitazone achieves this latter effect has remained unclear, however. We here show that pioglitazone administration increases the amount of linoleic acid (LA) metabolites in adipose tissue of KK-Ay mice. These metabolites are produced by lactic acid bacteria in the gut, and pioglitazone also increased the fraction of Lactobacillus in the gut microbiota. Administration of the LA metabolite HYA (10-hydroxy-cis-12-octadecenoic acid) to C57BL/6 J mice fed a high-fat diet improved liver histology including steatosis, inflammatory cell infiltration, and fibrosis. Gene ontology analysis of RNA-sequencing data for the liver revealed that the top category for genes downregulated by HYA treatment was related to extracellular matrix, and the expression of individual genes related to fibrosis was confirmed to be attenuated by HYA treatment. Mechanistically, HYA suppressed TGF-ß-induced Smad3 phosphorylation and fibrosis-related gene expression in human hepatic stellate cells (LX-2). Our results implicate LA metabolites in the mechanism by which pioglitazone ameliorates liver fibrosis, and they suggest that HYA is a potential therapeutic for NAFLD/NASH.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Ratones , Humanos , Animales , Enfermedad del Hígado Graso no Alcohólico/patología , Pioglitazona/farmacología , Ácido Linoleico/metabolismo , Células Estrelladas Hepáticas/metabolismo , Ratones Endogámicos C57BL , Hígado/metabolismo , Cirrosis Hepática/patología , Fibrosis , Dieta Alta en Grasa/efectos adversos , Factor de Crecimiento Transformador beta/metabolismo
14.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37833896

RESUMEN

Olive possesses excellent nutritional and economic values for its main healthy products. Among them, a high content of antioxidant compounds, balanced during the ripening process, are produced under genetic and environmental control, resulting in high variability among cultivars. The genes involved in these complex pathways are mainly known, but despite many studies which indicated the key role of light quality and quantity for the synthesis of many metabolites in plants, limited information on these topics is available in olive. We carried out a targeted gene expression profiling in three olive cultivars, Cellina di Nardò, Ruveia, and Salella, which were selected for their contrasting oleic acid and phenolic content. The -omics combined approach revealed a direct correlation between a higher expression of the main flavonoid genes and the high content of these metabolites in 'Cellina di Nardò'. Furthermore, it confirmed the key role of FAD2-2 in the linoleic acid biosynthesis. More interestingly, in all the comparisons, a co-regulation of genes involved in photoperception and circadian clock machinery suggests a key role of light in orchestrating the regulation of these pathways in olive. Therefore, the identified genes in our analyses might represent a useful tool to support olive breeding, although further investigations are needed.


Asunto(s)
Olea , Olea/genética , Olea/metabolismo , Transcriptoma , Fitomejoramiento , Perfilación de la Expresión Génica , Ácido Linoleico/metabolismo
15.
Animal ; 17(11): 101005, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37897870

RESUMEN

The ruminant requirements for essential fatty acids (EFAs), particularly linoleic acid (LA) and alpha-linolenic acid (ALA), have not been fully determined, although evidence suggests that an adequate supply of polyunsaturated fatty acids (FAs) could improve immunity and reproduction in transition cows. In previous studies, we predicted EFA intake for a group of cows based on animal characteristics and milk EFA secretions. However, to support precision livestock feeding, we need to match the nutrient requirements and intakes of each cow as closely as possible. Our group-level predictions may not be accurate enough to estimate the EFA intake of an individual cow, due to inter-individual variations in EFA digestion and metabolism related to differences in feed intake, intake patterns, and the composition and functioning of the rumen microbiota. To address this issue, here we set out to establish specific equations that predict EFA intake for an individual cow based on the difference (i.e. the residuals) between observed EFA intake and the predicted EFA intake based on our group-level equations. We studied a database of individual dairy cows (26 experiments; 503 datapoints from three research teams) and we predicted the residuals from (1) dietary and animal-related factors (i.e. full predictions) and (2) animal-related factors only (i.e. field predictions), which are considered more field-amenable. The variance of predicted LA and log ALA intake was explained to 68% by observed LA intake and 66% by observed log ALA intake, respectively. The residuals of LA intake were predicted by dietary ALA content, total FA intake, BW, milk yield and fat content in full predictions, and by BW, feeding level, milk yield and fat content, and sum of milk C4:0 to C14:0 FA in field predictions. The log residuals of ALA intake were predicted by dietary NDF and total FA contents, NDF intake, BW, milk protein, LA and ALA contents, and fat yield in full predictions, and by BW, DM intake, milk LA and ALA contents, and fat yield in field predictions. The field predictions showed a moderate loss of accuracy compared to full predictions based on RMSE of prediction (from 38 to 54 g/d for LA and from 0.090 to 0.12 log (g/d) for ALA). This work is the first to predict the EFA intake of an individual cow based on previously established group-level predictions of EFA intake adjusted for dietary and animal-related factors.


Asunto(s)
Dieta , Leche , Femenino , Bovinos , Animales , Leche/metabolismo , Dieta/veterinaria , Lactancia , Ácidos Grasos Esenciales/metabolismo , Ácidos Grasos Insaturados/metabolismo , Ácido Linoleico/metabolismo , Ácidos Grasos/metabolismo , Alimentación Animal/análisis
16.
Sci Rep ; 13(1): 16832, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803087

RESUMEN

Dietary saturate fatty acids (SFAs) have been consistently linked to atherosclerosis and obesity, both of which are characterized by chronic inflammation and impaired lipid metabolism. In comparison, the effects of linoleic acid (LA), the predominant polyunsaturated fatty acid in the Western diet, seem to diverge. Data from human studies suggest a positive association between high dietary intake of LA and the improvement of cardiovascular risk. However, excessive LA intake has been implicated in the development of obesity. Concerns have also been raised on the potential pro-inflammatory properties of LA metabolites. Herein, by utilizing a mouse model with liver-specific Ldlr knockdown, we directly determined the effects of replacing SFAs with LA in a Western diet on the development of obesity and atherosclerosis. Specifically, mice treated with a Ldlr ASO were placed on a Western diet containing either SFA-rich butter (WD-B) or LA-rich corn oil (WD-CO) for 12 weeks. Despite of showing no changes in body weight gain or adiposity, mice on WD-CO exhibited significantly less atherosclerotic lesions compared to those on WD-B diet. Reduced lesion formation in the WD-CO-fed mice corresponded with a reduction of plasma triglyceride and cholesterol content, especially in VLDL and LDL, and ApoB protein levels. Although it increased expression of proinflammatory cytokines TNF-α and IL-6 in the liver, WD-CO did not appear to affect hepatic injury or damage when compared to WD-B. Collectively, our results indicate that replacing SFAs with LA in a Western diet could reduce the development of atherosclerosis independently of obesity.


Asunto(s)
Aterosclerosis , Ácidos Grasos , Ratones , Humanos , Animales , Ácidos Grasos/metabolismo , Ácido Linoleico/metabolismo , Dieta Occidental/efectos adversos , Hígado/metabolismo , Aterosclerosis/patología , Receptores de LDL/genética , Receptores de LDL/metabolismo , Obesidad/metabolismo
17.
Comp Med ; 73(4): 295-311, 2023 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-37652672

RESUMEN

Rodents are currently the most common animals used for hepatic surgical resection studies that investigate liver regeneration, chronic liver disease, acute liver failure, hepatic metastasis, hepatic function, and hepatic cancer. Our previous work has shown that dietary consumption of linoleic acid (LA) stimulates the growth of rodent and human tumors in vivo. Here we compared 3 diets - a 5% corn oil diet (control), a diet deficient in essential fatty acids (EFAD), and an EFAD supplemented with LA in amounts equal to those in the control diet (EFAD+LA). We hypothesized that consumption of the LA provided in the EFAD+LA diet would elevate plasma levels of LA and stimulate regeneration in rats after a 70% hepatectomy (HPX), and that regeneration would not occur in the EFAD rats. Each diet group was comprised of 30 male and 30 female Buffalo rats (BUFF/CrCrl). Rats were fed one of the 3 diets and water ad libitum. After 8 wk on the assigned diet, rats were underwent a 70% HPX. On days 4 and 21 after HPX, 30 male and 30 female rats from each diet group were anesthetized for in vivo study and then were euthanized for tissue collection. For the in vivo study, arterial and venous blood samples were collected from the liver. LA-, glucose-, and O2 -uptake, and lactate- and CO2 -output were significantly higher in LA-replete rats as compared with LA-deficient rats. After a 70% HPX, the remaining liver mass in control and EFAD+LA groups had doubled at day 4, reaching 60% of the original total weight, and had regenerated completely at day 21. However, no regeneration occurred in the EFAD group. At day 4 the portions of livers removed from the control and EFAD+LA groups had significantly higher content of LA, protein, cAMP, and DNA as compared with their livers on day 21. [³ H]thymidine incorporation into liver DNA was significantly higher in the 2 LA-replete groups, with male values greater than female values, as compared with LA-deficient group. These data indicate that liver regeneration after HPX is dependent on dietary LA. Understanding the mechanisms of LA-dependent liver regeneration in rats supports our current efforts to enhance successful surgical resection therapies in humans.


Asunto(s)
Ácidos Grasos Omega-6 , Ácido Linoleico , Ratas , Masculino , Femenino , Humanos , Animales , Ácido Linoleico/metabolismo , Regeneración Hepática , Ácidos Grasos Esenciales , Dieta/veterinaria , ADN , Hígado/cirugía
18.
Nutrients ; 15(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37571253

RESUMEN

Linoleic acid (LA) is an essential omega-6 polyunsaturated fatty acid (PUFA) derived from the diet. Sebocytes, whose primary role is to moisturise the skin, process free fatty acids (FFAs) to produce the lipid-rich sebum. Importantly, like other sebum components such as palmitic acid (PA), LA and its derivative arachidonic acid (AA) are known to modulate sebocyte functions. Given the different roles of PA, LA and AA in skin biology, the aim of this study was to assess the specificity of sebocytes for LA and to dissect the different roles of LA and AA in regulating sebocyte functions. Using RNA sequencing, we confirmed that gene expression changes in LA-treated sebocytes were largely distinct from those induced by PA. LA, but not AA, regulated the expression of genes related to cholesterol biosynthesis, androgen and nuclear receptor signalling, keratinisation, lipid homeostasis and differentiation. In contrast, a set of mostly down-regulated genes involved in lipid metabolism and immune functions overlapped in LA- and AA-treated sebocytes. Lipidomic analyses revealed that the changes in the lipid profile of LA-treated sebocytes were more pronounced than those of AA-treated sebocytes, suggesting that LA may serve not only as a precursor of AA but also as a potent regulator of sebaceous lipogenesis, which may not only influence the gene expression profile but also have further specific biological relevance. In conclusion, we have shown that sebocytes are able to respond selectively to different lipid stimuli and that LA-induced effects can be both AA-dependent and independent. Our findings allow for the consideration of LA application in the therapy of sebaceous gland-associated inflammatory skin diseases such as acne, where lipid modulation and selective targeting of AA metabolism are potential treatment options.


Asunto(s)
Ácido Linoleico , Ácido Palmítico , Ácido Palmítico/farmacología , Ácido Palmítico/metabolismo , Ácido Araquidónico/farmacología , Ácido Araquidónico/metabolismo , Ácido Linoleico/farmacología , Ácido Linoleico/metabolismo , Glándulas Sebáceas/metabolismo , Sebo , Lipogénesis
19.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37569494

RESUMEN

A reduced risk of obesity and metabolic syndrome has been observed in individuals with a low intake ratio of linoleic acid/α-linolenic acid (LA/ALA). However, the influence of a low ratio of LA/ALA intake on lipid metabolism and endogenous fatty acid distribution in obese patients remains elusive. In this investigation, 8-week-old C57BL/6J mice were randomly assigned to four groups: low-fat diet (LFD) as a control, high-fat diet (HFD), high-fat diet with a low LA/ALA ratio (HFD+H3L6), and high-fat diet with a high LA/ALA ratio (HFD+L3H6) for 16 weeks. Our results show that the HFD+H3L6 diet significantly decreased the liver index of HFD mice by 3.51%, as well as the levels of triacylglycerols (TGs) and low-density lipoprotein cholesterol (LDL-C) by 15.67% and 10.02%, respectively. Moreover, the HFD+H3L6 diet reduced the pro-inflammatory cytokines interleukin-6 (IL-6) level and aspartate aminotransferase/alanine aminotransferase (AST/ALT) ratio and elevated the level of superoxide dismutase (SOD) in the liver. The HFD+H3L6 diet also resulted in the downregulation of fatty acid synthetase (FAS) and sterol regulatory element binding proteins-1c (SREBP-1c) expression and the upregulation of peroxisome proliferator-activated receptor-α (PPAR-α) and acyl-CoA oxidase 1 (ACOX1) gene expression in the liver. The low LA/ALA ratio diet led to a notable increase in the levels of ALA and its downstream derivative docosahexaenoic acid (DHA) in the erythrocyte, liver, perienteric fat, epididymal fat, perirenal fat, spleen, brain, heart, and gastrocnemius, with a strong positive correlation. Conversely, the accumulation of LA in abdominal fat was more prominent, and a high LA/ALA ratio diet exacerbated the deposition effect of LA. In conclusion, the low LA/ALA ratio not only regulated endogenous fatty acid levels but also upregulated PPAR-α and ACOX1 and downregulated SREBP-1c and FAS gene expression levels, thus maintaining lipid homeostasis. Optimizing dietary fat intake is important in studying lipid nutrition. These research findings emphasize the significance of understanding and optimizing dietary fat intake.


Asunto(s)
Ácidos Grasos , Metabolismo de los Lípidos , Ratones , Animales , Ácidos Grasos/metabolismo , Ácido alfa-Linolénico/farmacología , Ácido alfa-Linolénico/metabolismo , Ácido Linoleico/metabolismo , Ratones Obesos , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Ratones Endogámicos C57BL , Hígado/metabolismo , Dieta Alta en Grasa/efectos adversos , Obesidad/etiología , Obesidad/metabolismo
20.
Artif Cells Nanomed Biotechnol ; 51(1): 346-360, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37524112

RESUMEN

Extracellular vesicles (EVs) are small vesicles that are naturally released by cells and play a crucial role in cell-to-cell communication, tissue repair and regeneration. As naturally secreted EVs are limited, liposomes with different physicochemical properties, such as 1,2-dioleoyl-3-trimethylammonium propane (DOTAP) and linoleic acid (LA) with modifications have been formulated to improve EVs secretion for in vitro wound healing. Various analyses, including dynamic light scattering (DLS) and transmission electron microscopy (TEM) were performed to monitor the successful preparation of different types of liposomes. The results showed that cholesterol-LA liposomes significantly improved the secretion of EVs from immortalized adipose-derived mesenchymal stem cells (AD-MSCs) by 1.5-fold. Based on the cell migration effects obtained from scratch assay, both LA liposomal-induced EVs and cholesterol-LA liposomal-induced EVs significantly enhanced the migration of human keratinocytes (HaCaT) cell line. These findings suggested that LA and cholesterol-LA liposomes that enhance EVs secretion are potentially useful and can be extended for various tissue regeneration applications.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Humanos , Liposomas/metabolismo , Ácido Linoleico/análisis , Ácido Linoleico/metabolismo , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Movimiento Celular , Colesterol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...